
7/31/2017 Taking Photos Simply | Android Developers

https://developer.android.com/training/camera/photobasics.html 1/9

This lesson teaches you to

You should also read

Try it out

PhotoIntentActivity.zip

This lesson explains how to capture photos using an existing camera application.

Suppose you are implementing a crowd-sourced weather service that makes a global weather map by blending

together pictures of the sky taken by devices running your client app. Integrating photos is only a small part of your

application. You want to take photos with minimal fuss, not reinvent the camera. Happily, most Android-powered

devices already have at least one camera application installed. In this lesson, you learn how to make it take a picture for

you.

Request Camera Permission

Android Developers

Taking Photos Simply

Request Camera Permission

Take a Photo with the Camera App

Get the Thumbnail

Save the Full-size Photo

Add the Photo to a Gallery

Decode a Scaled Image

Camera

Intents and Intent Filters

DOWNLOAD THE SAMPLE

This site uses cookies to store your preferences for site-speci�c language and display options.

OK

https://developer.android.com/guide/topics/media/camera.html
https://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/shareables/training/PhotoIntentActivity.zip

7/31/2017 Taking Photos Simply | Android Developers

https://developer.android.com/training/camera/photobasics.html 2/9

If an essential function of your application is taking pictures, then restrict its visibility on Google Play to devices that

have a camera. To advertise that your application depends on having a camera, put a <uses-feature>

(https://developer.android.com/guide/topics/manifest/uses-feature-element.html) tag in your manifest �le:

<manifest ... >
 <uses-feature android:name="android.hardware.camera"
 android:required="true" />
 ...
</manifest>

If your application uses, but does not require a camera in order to function, instead set android:required to false. In

doing so, Google Play will allow devices without a camera to download your application. It's then your responsibility to

check for the availability of the camera at runtime by calling hasSystemFeature(PackageManager.FEATURE_CAMERA)

(https://developer.android.com/reference/android/content/pm/PackageManager.html#hasSystemFeature(java.lang.String)). If a camera

is not available, you should then disable your camera features.

Take a Photo with the Camera App
The Android way of delegating actions to other applications is to invoke an Intent

(https://developer.android.com/reference/android/content/Intent.html) that describes what you want done. This process

involves three pieces: The Intent (https://developer.android.com/reference/android/content/Intent.html) itself, a call to start

the external Activity (https://developer.android.com/reference/android/app/Activity.html), and some code to handle the

image data when focus returns to your activity.

Here's a function that invokes an intent to capture a photo.

static final int REQUEST_IMAGE_CAPTURE = 1;

private void dispatchTakePictureIntent() {
 Intent takePictureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 if (takePictureIntent.resolveActivity(getPackageManager()) != null) {
 startActivityForResult(takePictureIntent, REQUEST_IMAGE_CAPTURE);
 }
}

Notice that the startActivityForResult()

(https://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent, int)) method

is protected by a condition that calls resolveActivity()

(https://developer.android.com/reference/android/content/Intent.html#resolveActivity(android.content.pm.PackageManager)), which

returns the �rst activity component that can handle the intent. Performing this check is important because if you call

startActivityForResult()

https://developer.android.com/guide/topics/manifest/uses-feature-element.html
https://developer.android.com/reference/android/content/pm/PackageManager.html#hasSystemFeature(java.lang.String)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent, int)
https://developer.android.com/reference/android/content/Intent.html#resolveActivity(android.content.pm.PackageManager)
https://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent, int)

7/31/2017 Taking Photos Simply | Android Developers

https://developer.android.com/training/camera/photobasics.html 3/9

(https://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent, int)) using an

intent that no app can handle, your app will crash. So as long as the result is not null, it's safe to use the intent.

Get the Thumbnail
If the simple feat of taking a photo is not the culmination of your app's ambition, then you probably want to get the

image back from the camera application and do something with it.

The Android Camera application encodes the photo in the return Intent

(https://developer.android.com/reference/android/content/Intent.html) delivered to onActivityResult()

(https://developer.android.com/reference/android/app/Activity.html#onActivityResult(int, int, android.content.Intent)) as a

small Bitmap (https://developer.android.com/reference/android/graphics/Bitmap.html) in the extras, under the key "data". The

following code retrieves this image and displays it in an ImageView

(https://developer.android.com/reference/android/widget/ImageView.html).

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQUEST_IMAGE_CAPTURE && resultCode == RESULT_OK) {
 Bundle extras = data.getExtras();
 Bitmap imageBitmap = (Bitmap) extras.get("data");
 mImageView.setImageBitmap(imageBitmap);
 }
}

Note: This thumbnail image from "data" might be good for an icon, but not a lot more. Dealing with a full-sized

image takes a bit more work.

Save the Full-size Photo
The Android Camera application saves a full-size photo if you give it a �le to save into. You must provide a fully quali�ed

�le name where the camera app should save the photo.

Generally, any photos that the user captures with the device camera should be saved on the device in the public

external storage so they are accessible by all apps. The proper directory for shared photos is provided by

getExternalStoragePublicDirectory()

(https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory(java.lang.String)), with

the DIRECTORY_PICTURES (https://developer.android.com/reference/android/os/Environment.html#DIRECTORY_PICTURES) argument.

Because the directory provided by this method is shared among all apps, reading and writing to it requires the

READ_EXTERNAL_STORAGE (https://developer.android.com/reference/android/Manifest.permission.html#READ_EXTERNAL_STORAGE) and

WRITE_EXTERNAL_STORAGE (https://developer.android.com/reference/android/Manifest.permission.html#WRITE_EXTERNAL_STORAGE)

https://developer.android.com/reference/android/app/Activity.html#startActivityForResult(android.content.Intent, int)
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/app/Activity.html#onActivityResult(int, int, android.content.Intent)
https://developer.android.com/reference/android/graphics/Bitmap.html
https://developer.android.com/reference/android/widget/ImageView.html
https://developer.android.com/reference/android/os/Environment.html#getExternalStoragePublicDirectory(java.lang.String)
https://developer.android.com/reference/android/os/Environment.html#DIRECTORY_PICTURES
https://developer.android.com/reference/android/Manifest.permission.html#READ_EXTERNAL_STORAGE
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_EXTERNAL_STORAGE

7/31/2017 Taking Photos Simply | Android Developers

https://developer.android.com/training/camera/photobasics.html 4/9

permissions, respectively. The write permission implicitly allows reading, so if you need to write to the external storage

then you need to request only one permission:

<manifest ...>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
 ...
</manifest>

However, if you'd like the photos to remain private to your app only, you can instead use the directory provided by

getExternalFilesDir()

(https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)). On Android 4.3

and lower, writing to this directory also requires the WRITE_EXTERNAL_STORAGE

(https://developer.android.com/reference/android/Manifest.permission.html#WRITE_EXTERNAL_STORAGE) permission. Beginning with

Android 4.4, the permission is no longer required because the directory is not accessible by other apps, so you can

declare the permission should be requested only on the lower versions of Android by adding the maxSdkVersion

(https://developer.android.com/guide/topics/manifest/uses-permission-element.html#maxSdk) attribute:

<manifest ...>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"
 android:maxSdkVersion="18" />
 ...
</manifest>

Note: Files you save in the directories provided by getExternalFilesDir()

(https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)) or

getFilesDir() (https://developer.android.com/reference/android/content/Context.html#getFilesDir()) are deleted when the

user uninstalls your app.

Once you decide the directory for the �le, you need to create a collision-resistant �le name. You may wish also to save

the path in a member variable for later use. Here's an example solution in a method that returns a unique �le name for a

new photo using a date-time stamp:

String mCurrentPhotoPath;

private File createImageFile() throws IOException {
 // Create an image file name
 String timeStamp = new SimpleDateFormat("yyyyMMdd_HHmmss").format(new Date());
 String imageFileName = "JPEG_" + timeStamp + "_";
 File storageDir = getExternalFilesDir(Environment.DIRECTORY_PICTURES);
 File image = File.createTempFile(
 imageFileName, /* prefix */
 ".jpg", /* suffix */
 storageDir /* directory */
);

 // Save a file: path for use with ACTION_VIEW intents
 mCurrentPhotoPath = image.getAbsolutePath();

https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)
https://developer.android.com/reference/android/Manifest.permission.html#WRITE_EXTERNAL_STORAGE
https://developer.android.com/guide/topics/manifest/uses-permission-element.html#maxSdk
https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)
https://developer.android.com/reference/android/content/Context.html#getFilesDir()

7/31/2017 Taking Photos Simply | Android Developers

https://developer.android.com/training/camera/photobasics.html 5/9

 mCurrentPhotoPath = image.getAbsolutePath();
 return image;
}

With this method available to create a �le for the photo, you can now create and invoke the Intent

(https://developer.android.com/reference/android/content/Intent.html) like this:

static final int REQUEST_TAKE_PHOTO = 1;

private void dispatchTakePictureIntent() {
 Intent takePictureIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 // Ensure that there's a camera activity to handle the intent
 if (takePictureIntent.resolveActivity(getPackageManager()) != null) {
 // Create the File where the photo should go
 File photoFile = null;
 try {
 photoFile = createImageFile();
 } catch (IOException ex) {
 // Error occurred while creating the File
 ...
 }
 // Continue only if the File was successfully created
 if (photoFile != null) {
 Uri photoURI = FileProvider.getUriForFile(this,
 "com.example.android.fileprovider",
 photoFile);
 takePictureIntent.putExtra(MediaStore.EXTRA_OUTPUT, photoURI);
 startActivityForResult(takePictureIntent, REQUEST_TAKE_PHOTO);
 }
 }
}

Note: We are using getUriForFile(Context, String, File)

(https://developer.android.com/reference/android/support/v4/content/FileProvider.html#getUriForFile(android.content.Context,

java.lang.String, java.io.File)) which returns a content:// URI. For more recent apps targeting Android 7.0 (API

level 24) and higher, passing a file:// URI across a package boundary causes a FileUriExposedException

(https://developer.android.com/reference/android/os/FileUriExposedException.html). Therefore, we now present a more

generic way of storing images using a FileProvider

(https://developer.android.com/reference/android/support/v4/content/FileProvider.html).

Now, you need to con�gure the FileProvider

(https://developer.android.com/reference/android/support/v4/content/FileProvider.html). In your app's manifest, add a provider

to your application:

<application>
 ...
 <provider
 android:name="android.support.v4.content.FileProvider"
 android:authorities="com.example.android.fileprovider"

https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html#getUriForFile(android.content.Context, java.lang.String, java.io.File)
https://developer.android.com/reference/android/os/FileUriExposedException.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html
https://developer.android.com/reference/android/support/v4/content/FileProvider.html

7/31/2017 Taking Photos Simply | Android Developers

https://developer.android.com/training/camera/photobasics.html 6/9

 android:exported="false"
 android:grantUriPermissions="true">
 <meta-data
 android:name="android.support.FILE_PROVIDER_PATHS"
 android:resource="@xml/file_paths"></meta-data>
 </provider>
 ...
</application>

Make sure that the authorities string matches the second argument to getUriForFile(Context, String, File)

(https://developer.android.com/reference/android/support/v4/content/FileProvider.html#getUriForFile(android.content.Context,

java.lang.String, java.io.File)). In the meta-data section of the provider de�nition, you can see that the provider expects

eligible paths to be con�gured in a dedicated resource �le, res/xml/�le_paths.xml. Here is the content required for this

particular example:

<?xml version="1.0" encoding="utf-8"?>
<paths xmlns:android="http://schemas.android.com/apk/res/android">
 <external-path name="my_images" path="Android/data/com.example.package.name/files/Pictures" />
</paths>

The path component corresponds to the path that is returned by getExternalFilesDir()

(https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)) when called with

Environment.DIRECTORY_PICTURES (https://developer.android.com/reference/android/os/Environment.html#DIRECTORY_PICTURES).

Make sure that you replace com.example.package.name with the actual package name of your app. Also, checkout the

documentation of FileProvider (https://developer.android.com/reference/android/support/v4/content/FileProvider.html) for an

extensive description of path speci�ers that you can use besides external-path.

Add the Photo to a Gallery
When you create a photo through an intent, you should know where your image is located, because you said where to

save it in the �rst place. For everyone else, perhaps the easiest way to make your photo accessible is to make it

accessible from the system's Media Provider.

Note: If you saved your photo to the directory provided by getExternalFilesDir()

(https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)), the media

scanner cannot access the �les because they are private to your app.

The following example method demonstrates how to invoke the system's media scanner to add your photo to the

Media Provider's database, making it available in the Android Gallery application and to other apps.

private void galleryAddPic() {
 Intent mediaScanIntent = new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE);
 File f = new File(mCurrentPhotoPath);
 Uri contentUri = Uri.fromFile(f);
 mediaScanIntent.setData(contentUri);

https://developer.android.com/reference/android/support/v4/content/FileProvider.html#getUriForFile(android.content.Context, java.lang.String, java.io.File)
https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)
https://developer.android.com/reference/android/os/Environment.html#DIRECTORY_PICTURES
https://developer.android.com/reference/android/support/v4/content/FileProvider.html
https://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)

7/31/2017 Taking Photos Simply | Android Developers

https://developer.android.com/training/camera/photobasics.html 7/9

 this.sendBroadcast(mediaScanIntent);
}

Decode a Scaled Image
Managing multiple full-sized images can be tricky with limited memory. If you �nd your application running out of

memory after displaying just a few images, you can dramatically reduce the amount of dynamic heap used by

expanding the JPEG into a memory array that's already scaled to match the size of the destination view. The following

example method demonstrates this technique.

private void setPic() {
 // Get the dimensions of the View
 int targetW = mImageView.getWidth();
 int targetH = mImageView.getHeight();

 // Get the dimensions of the bitmap
 BitmapFactory.Options bmOptions = new BitmapFactory.Options();
 bmOptions.inJustDecodeBounds = true;
 BitmapFactory.decodeFile(mCurrentPhotoPath, bmOptions);
 int photoW = bmOptions.outWidth;
 int photoH = bmOptions.outHeight;

 // Determine how much to scale down the image
 int scaleFactor = Math.min(photoW/targetW, photoH/targetH);

 // Decode the image file into a Bitmap sized to fill the View
 bmOptions.inJustDecodeBounds = false;
 bmOptions.inSampleSize = scaleFactor;
 bmOptions.inPurgeable = true;

 Bitmap bitmap = BitmapFactory.decodeFile(mCurrentPhotoPath, bmOptions);
 mImageView.setImageBitmap(bitmap);
}

https://twitter.com/AndroidDev
https://plus.google.com/+AndroidDevelopers
https://www.youtube.com/user/androiddevelopers

7/31/2017 Taking Photos Simply | Android Developers

https://developer.android.com/training/camera/photobasics.html 8/9

7/31/2017 Taking Photos Simply | Android Developers

https://developer.android.com/training/camera/photobasics.html 9/9

